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Geodesics, gravitons, and the gauge-fixing problem
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When graviton loops are taken into account, the background metric obtained as a solution to the one-loop
corrected Einstein equations turns out to be gauge-fixing dependent. Therefore it is of no physical relevance.
Instead we consider a physical observable, namely, the trajectory of a test particle in the presence of gravitons.
We derive a quantum corrected geodesic equation that includes backreaction effects and is explicitly indepen-
dent of any gauge-fixing parametg80556-282(197)02024-9

PACS numbd(s): 04.60—m, 11.15.Kc

[. INTRODUCTION This analysis also leads us to find a solution to the so-
, . ... called gauge-fixing problem. A “technical” obstacle to think
In quantum field theory there are many physical situations : : T .
o ’ : : ., of a solution to the SEE as the metric of spacetime is that in
where one is interested in the dynamical evolution of fields . g .
rather than irS-matrix elements. The effective actioBA) is general it depends on Fhe gauge f!xmg of the grav!tpns: As an
a useful tool to obtain the equations that govern such dyr]ame_xample we can mention calculations of compactification ra-
o . X dii in Kaluza-Klein theoried 3]. The standard approach to
ics including the backreaction effects due to quantum fluc'tackle this problem is to consider the Vilkovisky-DeWitt ef-

tuations. In the context of gravity, the equations that give thqective action[4], which is specifically built to give a re-

dynamics of the spacetime metric including quantum effect$,,ametrization, gauge-fixing independent action. However,
are the so-called semiclassical Einstein equati®®5 [1]. s action suffers from another type of arbitrariness, namely
These have been widely used to analyze different physicghe gependence on the supermetric in the space of fields that
situations such as gravitational collapse and black holgs introduced in its definitiofi5—7]. The aforementioned ob-
evaporation. stacle is not “technical” but physical: since the classical
Since DeWitt's pioneering work2], it is known that, at  device couples to gravitons, the solution to the SEE will not,
the one-loop level, the quantization of the fluctuations of thein general, have a clear physical interpretation. We will dem-
gravitational field around a given background is equally asnstrate explicitly that while the solution to the SEE is
important as the quantization of the matter fields. Thereforegauge-fixing dependent, the quantum corrected geodesic
the graviton field contributes to the SEE along with all theequation(that takes into account such couplingoes not
other matter fields. In order to avoid the technical complica-depend on the gauge fixing. In summary, the solution of the
tions that take place when gravitons are quantized, their corbackreaction problem consists of two steps: to solve the
tribution to the SEE is usually neglected. It is a commonsemiclassical Einstein equations and to extract the physical
belief that, once the technical details are solved, one caguantities from the solution.
compute their contribution to the energy momentum tensor In order to illustrate these facts we will consider the cal-
and write the full one loop SEE. The solution to these equaeulation of the leading quantum corrections to the Newtonian
tions would be the quantum corrected metric of spacetime.potential. As has been pointed out[®-10], when general
In the present paper we will argue that, when gravitongelativity is looked upon as an effective field theory, low-
are taken into account, the solution to the SEE is not physienergy quantum effects can be studied without the knowl-
cal. The reason is simple: any classical device used to meadge of the(unknown high-energy physics. The leading
sure the spacetime geometry will also feel the graviton fluclong distance gquantum corrections to the gravitational inter-
tuations. As the coupling between the classical device andctions are due to massless particles and only involve their
the metric is nonlinear, the device will not measure thecoupling at energies low compared to the Planck mass. Us-
“background geometry”(i.e., the geometry that solves the ing this idea, many authors have calculated the leading quan-
SEB. As a particular example we will show that a classicaltum corrections to the Newtonian potential computing differ-
particle does not follow a geodesic of the background metricent sets of Feynman diagram$,9,11,12. Instead of
Instead its motion is determined by a quantum corrected ge@valuating diagrams artmatrix elements, we are here con-
desic equation that takes into account its coupling to thecerned with a covariant calculation based on EA and effec-
gravitons. tive field equations. This covariant approach is more ad-
equate to study problems in which one considers fluctuations
around nonflat backgrounds. We shall first compute the SEE
*Email address: dalvit@df.uba.ar for the backreaction problem starting from the standard EA
"Email address: fmazzi@df.uba.ar and show how they depend on the gauge fixing. Using a
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corrected geodesic equation we will deduce a physical quan- To proceed further one has to choose a particular gauge-
tum corrected Newtonian potential, which does not dependixing function. The simplest choices of gauge are those

on the gauge-fixing parameters. called “minimal” gauges, which lead to the evaluation of
functional traces for gravitons and ghosts of second-order
Il. THE ONE LOOP EFFECTIVE ACTION FOR differential operators of the fornf sg(V)=Cag g“'v,v,
GRAVITY +MASS: DIVERGENCES +Qug, WhereC,g is an invertible matrix and,g is an

arbitrary matrix. For these cases the one loop EA can be
expanded in powers of the background dimensionality using
2 _ the well-known Schwinger-DeWitt expansion, which is local
SGz—Zf d*xV-gR, (1) in the background field¢see Appendix A For the other
K “nonminimal” gauges, in[13] it has been developed a re-

The Einstein-Hilbert action for pure gravity'is

— - ] duction method that generalizes the former technitgee
whereR is the curvature scalag,, is the metric tensor, Appendix B.

g=detg,,,, and x?=327G, with G being Newton’s con- In the following we shall mainly consider the so-called
stant. In the background field method we consider fluctuafamily, which is a one parameter family of gauge-fixing
tions of the gravitational field around a background metric functions

g_u,,ngJr s, . Expanding the action up to quadratic or-

der in the graviton fluctuations,,,,, the gravitational action 1 [ - 1
reads XH“N) = m»g”V SW—Eg’ VHS,, . (5)
2 1 For gauge-fixing functions li in th tric fluctuati
I O e Bt WD DRy gaug g functions linear in the metric fluctuations,
Se f dxv-g K2 R+ KS‘”(g R=2R*) ghosts decouple from the fluctuatiogys, and only couple to

the background fields. The one loop EA takes the form

1 aQuV 1 a afl
+ EVQSMVV S —EVQSV s+V,sVgs

i
Ser=Se+5Tr In Febrv(V)—iTr In (O8“+R¥), (6)

~V,5,5VPs**+R

1
2_ . . .
25 ZSMVSMV> where the second term involves graviton diagrams and the
third one involves ghost diagrams. The second-order differ-
ential operator is

+R¥(28)S,,—5S,,) [+ |, 2) )
A
FaB,W(V): /—gC“B'”"(Dé“ ;_ 6(MVUVV)
where s=g*’s,,, and the ellipsis denotes higher order ACo) 14 0T
terms in the fluctuations. In order to fix the gauge one N
cho_oses a gauge-fixing functioyt[ g,s], and a gauge-fixing +1+)\ 94"V (\V o+ PLLL, )
action

1 where

Sylg.sl=—5 f d%V= X" guX". 3 .
aBNo__ (qhanoB ABnOa _ qhoNafS

The one loop effective action for the background metric is ¢ 4(g g SRCRe

obtained from integrating out quantum fluctuations and im-

plies the evaluation of functional determinants for gravitons P{7=2R* "'+ 25\R) —g*"R,,— g,,R*' — R34 3%

and ghosts in the presence of the background fields. It reads

1
+>9"g\R. 8

[
Sefi=Sgt5Tr In " 5%
2 59°Pg” 69" 397 Here the parentheses denote symmetrization with a 1/2 fac-
Sx* tor. We see thafF does not have the form of a minimal
—iTrin| —29,,Vp——|. (4)  operator due to the presence of the second and third terms.
5g“? For the special case=0, which is known as DeWitt gauge,

) ) ) . we have the simplest case of a minimal operator.
The first term is the classical action, the second one stems Next we couple gravity to a heavy particla classical

from graviton fluctuations and the last one is the ghosts CONsourcd of massM, which adds a new term to the action
tribution. These last two terms are quantum corrections lin- '

ear inf. __
SM=—MJ V=g, dx“dx”. 9)

our metric has signature-(+ + +) and the curvature tensor is  This coupling introduces an additional contribution to the
defined asR*,,;=0d,l%5— -+, Rg=R* .5 and R=g“’R,;. EA. Expanding the action for the particle up to quadratic

12

We use unitsi=c=1. order in gravitons, we have
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Zs, - Kzs S XMXUXPXT+ - - - div

2 Tuv g “uvipo ) S (AN=0)=
(10

SM=—Mde 1-

(4—d)96m?

where the overdots represent derivatives with respect to the ><J d4x\/—_g[§(RWp,,RWP”
proper timer, defined agl?= —9g,,dx*dx", and the ellip- 1

sis are higher order terms in the gravitons fluctuations. Intro- 21 1

ducing an identity as % [d*y—g&*[y—x(7)], the action —4R, R*+ R2)+ERMVR‘”+20R2} (16)
can be rewritten in the following way:

where the first term in parentheses is the Gauss-Bonnet term,

_ 4 , a topological invariant id=4 spacetime dimensions. In Ap-
Su= f dr+3 f dyV=gs,,(Y) T*(y) pendix A we show how to evaluate the divergence stemming
from the massive part for the minimal gauye-0. It reads

f d*y V= gS,,(Y)S,e(Y)MAEPI(y) + - - -,

ASY(A=0)= f Xy/— vpeMH#7P7
(1) M (A=0)= (4—d)64r? Mo
where 2M peomy 1 Rgp(,u 60'1)) 1
+ Mmrpo + E . ( 7)
TEY(y) = MJ drxHx” 8y —x(7)), (12 Now we have to calculate the EA for any member of the
\ family gauge-fixing functions other than the=0 one. The
g calculation is cumbersome and we leave it for Appendix B.
an

Here we just state the main result that shall concer(sas
below), namely, the divergence of the one loop EA that is

—~ MK2 e i i MY — 2 puv__ 1 y+; wv
Rmoo(y) = . fdf&“(y—x(r))x“x”xpx". (13 linear in the extremaf’ (2/k)(R*”—3Rg*") + 5 T+,

2

K
iv iv _
The quadratic terms in E@11) introduce a new contribution AST()=AST(1=0) 4—d 24772
to the differential operatoF(V), which finally takes the
form

5
XJd4x\/—g[—SRMV€””+§R9W5”“” :

5%)\V(T)VV) (18)

where AS™(A=0)=ASI'(A=0)+ASIV(\=0) is the di-
v L pHY L MAY vergence for the DeWnt gauge, that was already calculated.
9"V Ve tPL M”"]’ (14 Note that the(ultraviolet divergences of the EA take the
form of local tensors expressed in terms of curvatures and
with the energy-momentum tensor for the source patrticle.

Febrr (V)= - gC“BM[ 08680~ 1x

++)\

BV — (- 1\ pvaBih IIl. LONG DISTANCE LEADING QUANTUM
MRe(¥)=(C D" M aproly) CORRECTIONS: THE LOG TERMS

The theory we are considering is not renormalizable,
since the divergences cannot be absorbed into the parameters
introduced thus far. Additional divergent countertertaad
some accompanying finite partquadratic in the curvature
tensors must be added to the classical acHgf S,, . How-

As is well-known, the EA has divergences. For examplegver, the nonrenormalizability of the theory is not an impedi-
for the pure gravitational part, the one loop divergences ifment for making well defined quantum predictions at low
the DeWitt \ =0) gauge have been calculated long ago usenergies/large distances. As we have already remarked, the
ing dimensional regularization and turn out to be local termddea is to treat gravity as an effective field theory, and per-
quadratic in the curvature tensdrsd]. They read form a systematic expansion in the energy. In this approach,
the unknown parameters introduced with the various coun-
terterms have to be determined by comparison with experi-
2To be precise, the EA contains two additional divergences, ongnent, which then allows to make predictions to a given order
proportional toy/—g and another proportional tg—gR. As these  in an energy expansion. However, the low-energy physics is
can be absorbed into a redefinition of the cosmological constant andot contained in these parameters, but rather in a different
the Newton constant, we shall not consider them in what follows. class of quantum corrections. The leading long distance cor-

X [GP "%\ Xy 2XEX" Xy X, ] (15)
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rections stem from the nonlocal, nonanalytic terms in the one Mx2 .

loop effective action. These nonlocal terms have been com- MAIAO(y) = 8 83(y) [g*"+28635] 8555,
puted in[15,16 expanding the EA in powers of the curva-

tures, using a resummation procedure of the Schwinger-

DeWitt expansion for the action. Keeping up to quadratic

order in the curvature tensors, the general form of such terms M RSP(H STV = M «? R&¥( >
i mYpo y)!
is RG(O)R, where R denotes any of the tensors 8
R,R,, M, andG(0J) is a nonlocal form factor. For the (23
theory we are consideringz([J) is proportional to In¢-0J),
and these logarithmic terms are the relevant ones in the low- Mk2 .
energy limit. The proportionality constants accompanying MWWPP”’“’=Té\'s(y)[g””POOWnLZPOOOO]
the In(~=0) can be read off from thélocal) divergences in
Egs. (16), (17), (18 in a manner outlined if9,15. One M x2 R
extracts the coefficient of the logarithmic correction from the T3 R&%(y).
divergence in the following way:
a . af , With the help of these expressions, the contribution of the
mf d*xy=g(-+)—— EJ d*xy=g(- - )In(=0). source to the nonlocal part of the EA is

(19

M 2

Using this result, the nonlocal part of the EA proportional to ASH(A=0)= 5
the logarithm takes the form AS= AS&'()\ =0) 1536m
+ASH(A=0)+AS"(A#0), with

f d*xy/—gR In(—V?) 83(x),
(24

21 where we have used the fact that the mhkds static to
f d4x\/—_g[ERW|n(—D)RW replacel]— V2. We have omitted the term that is quadratic
in M because it will be irrelevant in the long distance limit.
1 Adding the classical and quantum contributions of the EA
+ =R In(—D)R}, (200  and taking functional derivations with respect to the metric,
20 it is possible to compute the SEE including backreaction of
gravitons. As we are neglectin®(R°) terms in the effective
action, it makes no sense to ret@{R?) terms in the equa-
M ,,..In(—O)MPoxY tions of motion. Therefore, when doing the variation of the
e action with respect to the metric, it is not necessary to take
1 into account theg,, dependence of the logarithmic form
+2lep0|n(_D)(pPUMV+_R59(,U«50V)”, factors. Moreover it is possible to commute the covariant
6 derivatives acting on a curvature, ie.,
21) V,.V,R=V,V,R+O(R?. However, if one uses the stan-
dard in-out EA calculated thus far, the equations of motion
turn out to be neither real nor causal. In order to get the
nl _ 4 Y equations for the mean values one can take any of the fol-
AS ()\¢0)—f d*x\=gla(M)R,,In(—0)& lowing routes: to calculate the in-in EAwhich involves a
doubling of the number of fieldsand derive from it the
appropiate field equationgl7], to take twice the real and
+b(N)Rg,,In(—0)E*], (22 causal part of the in-out equations, or to calculate the Euclid-
ean EA and replace in the equations of motion the Euclidean
propagators by the retarded onds)]. Using any of these
alternatives, the mean value equations, up to linear order in
Eurvatures, read

1

Iy — )=
ASEO=0)=—

1

ASH(A=0)=—
l ) 642

f d*xy—g

wherea(\) = — 5\ /4872 andb(\) =5\ k2/9672.

We choose a classical static point mass located at th
origin. Hence x*=(1,0,0,0), T*"(x)=M 8£545%(x), and
Th=—M 53(x). As we will calculate long distance correc-
tions to gravitational interaction@n particular to the New- 1 G M
tonian potentigl we can assume the source is a “point %( R;w_ERg;w):Tnv+<Tuv>x=0+<Tw>x=o
mass,” although its size should be much larger than its
Schwarzschild radius and the Planck length in order to jus- F(Tudaon T {Tudoon, (25
tify the weak field approximation to be done in what follows.

With this choice for the source, the different tensors appear-
ing in the massive nonlocal part of the EA take the form  where
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fore vanish identically when the equations are solved pertur-

21 1 =
(Tunn-0="— 962 Eln(—VZ)HLZV)JFE)"‘(—VZ)HLIV) , batively. We writehgs=h{Q+h{) , wherehD=4GM/r is
the classical contribution, and{}) is the quantum correc-
tion. We get
5M «? -
(Tu=0=7 5 (V,.V,=8,,V2)In(= V%) 8(x),
PN Tegm2 M H oy 2 GM 5GM . GM . GM
, . 0~ " 15; 3 37 (3 a( )r_3 ( )r—,
(Tunday =200 = 5 In(= V2 HE +—In(~VAH) 8

where the first and second terms come from the pure gravi-
tational and massive part of the Efior the DeWittA =0
, gauge and the last two terms correspond to other gauges of

1
- EVZIn(—VZ)T
the X family. The equation for the trace is

nv

V2h=16mG[ T +(THP o+ (TiNo+(Than

2
—IN(=VHHD+V,V In(-V)Ts
“ (T, (29

<T,uv>b()\): b()\)

’ (26)  Whose perturbative solutidn=h(®+h(*) leads to a classical

~9,,V2n(-V?*)Tyg :
# termh(®=4GM/r and a quantum correction

where we have introduced the tensors 18 G2M 5 G2M GM GM
H()=4v,V,R-4g,,V?R and H?)=2V VvV R-g,,V°R h“):——s . 5 t4a\) —5- +24b(\) —-.

2 2 T T r r
—2V“R,,. The nonlocal operator Ir{(V“) acts on thes

function as In(—V?)&¥(x)=—1/2zr3 [18]. (30
The origin of each term is the same as previously discussed.
IV. QUANTUM CORRECTIONS Therefore the 00 component of the perturbatigy reads
TO THE CLASSICAL METRIC

o . 1 2GM[ = 43  5G
In order to solve the effective Einstein equations for the hoo=hgo— =h= 1+ -
T 2 v |7 30mr2 1272

background metric we shall make perturbations around flat
spacetimeg,,,= 7,,+h,, with ,,=diag(—+++). We
choose the harmonic gaugehﬂ(p—%hnw)?EO for the
background perturbation metric. It is worth mentioning that r

this choice is completely independent of the gauge-fixing_l_ i i i
problem for the quantum fluctuations. In this gauge, the he first term is due to the presence of the classical ivass

. . 1 . (for simplicity we consider only the Newtonian limit, that is,
Ricci tensor is Ry, = _Evzhﬂ” and the Ricci scalar we do npot inyclude classical cgrrections from general relativ-
R=-3V*h, with h=7*"h,,. Indeces are lowered and ity). The last four terms are quantum corrections. The second
raised with the flat metric. The equations of motion take theone stems from pure gravitational contributigmracuum po-
form larization while the remaining ones arise from the coupling
— G " of the masdM to gravitons. The Newtonian potential follows
Veh,, == 167G T, +(T )= o (T =0T (Tundann) through the identity/(r) = — hyo. We stress again that the
+H(Tudboo s (27)  honlocal logarithmic corrections to the effective action give
the leading quantum corrections in the long distance limit,
that are proportional to ~3. Had we considered additional
terms proportional taR? in the effective action, we would
have obtained additional corrections to the classical metric
IJihat vanish exponentially as—o.
. 1 ) From Eq.(31) it is then clear that the metric that solves
metric asV(r) = —zNgo. In order to findhgo we solve EQ. e hackreaction equations for the one loop quantized gravity
(27) for hqg and the trace of that equation for We find a  depends on which particular function one chooses to fix the
perturbative solution to these equations around the classicghuge. It is for this reason that the classical geodesic equa-
solutions. This perturbative approach is the reason for havingon for such metric cannot be physical.
omitted terms in the EA that are proportional to the square of

the extremalc®”. These contribute to the RHS of E(27) V. QUANTUM CORRECTED GEODESIC EQUATION
with terms proportional to the classical equations, and there-

L2 =2b)|

; (31)

whereh ,,=h,,— %hﬂ,w- The terms in the right-hand side
(RHY) are those appearing in E@6) evaluated in the weak

field approximation. In this approximation, the Newtonian
potential is related to the 00 component of the perturbatio

Let us consider a classical test particle of mas# the
presence of the quantized gravitational figlg, . A physical

*This expression can also be obtained by means of the Fourieshservable should be the motion of this particle. We consider
transformf[d3q/(27)3]e™ "9 "Ing?=—1/27r 3. that the mass of this particle is much smaller th&nwhich
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allows us to neglect all contributions of the test particle to

the solution Eq.(31) of the one loop corrected equation. AS, y(A=0)=-—
Now comes the key ingredient: in order to determine how

this test particle moves, one also has to take into account the

yv— gm,u.vpo"n( - D)MPU#V

fact that it couples to the quantum metlng through the __ 1 mM«? f d4y\/_ln( D)ég(y)
term—mJ v — gﬂ,,(z)dz“dz wherez* denotes the path of 327?

the test particle. Therefore there will be an extra contribution

to the one loop EA due to this coupling to gravitons, which xf dré*(y—z(7))

in turn will introduce a correction to the geodesic equation. It

can be obtained from Eq$21), (22) replacingM,,,,, by
,“,p(,+ M ,.pe @and T#” by T#"+TH" and keeping terms

linear inm. Here the tensom,,,,, is the one given in Eq. 5

(15 with M replaced bym andx,, replaced byz,,, andT# = oo f d7in(=0)6%(z(7)). (35

is the energy-momentum tensor for the test particle, given in

Eqg. (12), with the same replacement. This contribution is  Here we have used the fact that, in the nonrelativistic limit,

Zo~—1. AsAS,, is proportional toi, we have also set the
metric g,, in this equation equal to the classical one

1 n.,—any other correction would contribute with terms
ASm:J d4x\/—g{— Muupeln(— )M PORY O(%2). In a similar fashion
32w
1 1 ASyr(N=0)
_32 2 MypolN(— D)( po#y+gR5”(“5‘”’))
a(\) b)) =" Too? yV=gm,,,.In(—0)R&*57")
+TRWIn(—D)T’nﬁ”+—2 Rg,,In(—O)TH" |
= d7in(—0O)R(z(7 36
@ - [ - ooraon. @9

i - The oth ing i 2
The first two terms correspond to the= 0 gauge fixing, and e other terms appearing in E@2) are

the last two are extra terms appearing for any other gauge.

The geodesic equation for the test particle can be obtained
by taking the functional derivative of the effective action ASnp(A=0)=-
with respect to the coordinates of the particle

d*yV—gm**In(-=0)P,,,,

mc? Jd [g* 7P77 1+ D77V 7P3 ]
=— 71g*rzPz%+ 221722 2°
25672 J
_ 1 8Se_ dzzf’+rp dz* dz” L1 1 6AS,
“m oz, d2  *dr dr| m &z, ° XIN(=EDPpopns (37

(33

AS;, am_ Jd“ V=gR,,In(—=0O)TH"
where I =~ is the Christoffel symbol and
dr?= —d,,dZdZ". In the weak, nonrelativistic Newtonian B mj RN
limit, the quantum corrected geodesic equation reads —a()\)§ d72¢2°In( = )R, (2(7), (38)

and

d?z 1. 1 5AS, b(\)
qz 2 Mo s (34 ASmpp=—5— J d*y V= gRg,IN(~ ) TH"

m
=—b(\)= | d7iIn(-=0O)R . 39
Note thathyg, given in Eq.(31), depends om(\) andb(\). () ZJ in( JR@™) 39

Now we proceed to evaluate the RHS of this equation. To
that end we first calculate the different termsiS,,. Using [N these equations the Ricci scalar in the one for the classical
the expression foM~#**? corresponding to the static source, metric, i.e., R(z(7))=—3V2h©(z(7))=87GM 6%(z(7)).
the first term of Eq(32) reads The same holds for the Ricci tens8y,,(z(7)).
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Now we take the variation with respect 20 We obtain

5
—A =0)=
3 Smm(A=0)

mMGZ*( 1)
V EYE
™ r

7785

where we have restored unité @ndc). A comparison be-
tween Eq.(31) and Eq.(43) shows that the coupling of the
test particle with the gravitons produces an additional contri-
bution to the Newtonian potentifihe last term in Eq(43)]

and makes it gauge-fixing independent. Note that the long
distance quantum correction above is extremely small to be
measured. However, the specific number is less important
than the conceptual fact that the potential and motion of the
test particle are gauge-fixing independent.

VI. CONCLUSIONS

We hope to have convinced the reader that if she/he is
S NE interested in solving the backreaction problem including the
—ASpan)=—a(MN)mMMGV —3> . graviton contribution, it is not enough to solve the semiclas-
6z sical Einstein equations because they are gauge-fixing depen-
dent and not physical. Rather she/he has to look for physical
observables. As an illustration of this point we have chosen
the trajectory of a test particle and we have explicitly shown
that, in the Newtonian limit, the usual effective action gives
a gauge-fixing independent result.

We would like to mention several lines for future re-
search. On the one hand, it is of interest to check whether the
1 0AS, |7G -[ GM Newtonian effective potential derived in this paper does not
m sz E_aO‘HZb()‘) v =N depend on reparametrizations of the variables chosen to per-

(42) form the perturbative expansion. When working within the
Vilkovisky-DeWitt approach, the potential should not de-
Inserting Eq.(31) into this expression we see that thosePend on the supermetric defined on the space of fields. On
gauge-fixing-dependent terms arising from the backreactiofhe other hand, it would be interesting to find the quantum
metric cancel exactly those coming from the coupling of thecorrected geodesic equation in a cosmological settiiegir-
test particle to gravitons. Note that the terms watn) and ~ a@bly, beyond the Newtonian approximatjorFinally, we
b(\) cancel separately. would like to point out that similar |'deas to the one proposed

One can perform the same calculation as before for anj€re can be applied to the analysis of the mean value equa-
gauge not belonging to the family in a straightforward tons of any gauge theory, for example, when computing
manner. As it was already mentioned, the difference betwee@luon backreaction effects on classical solutions to Yang
the EA for thex =0 gauge and that for any other gauge mustMills theories.
be proportional to the extrem&t”, which vanishes on shell.
Keeping up to quadratic order in curvature, this requirement
fixes the most general form such a difference can Hawee
concentrate on the nonanalytic log teyms

AS|given gaugé AS(A=0)

r

1
3

o N
o0z r

: (40)

-

wherer =|z|. Therefore

d?z 1.
a2

ACKNOWLEDGMENTS

We acknowledge the support from UBACyYT, Fundamio
Antorchas and ConicetArgenting. F.D.M. thanks Jorge
Russo for useful discussions on related matters.

=J’ d*xy—glaR,,In(—0)&*” APPENDIX A: DIVERGENCES FOR MINIMAL GAUGES

In this appendix we calculate the divergence of the one-
loop EA for the DeWitt gauge.=0. We follow closely the

wherea andb are constants that depend on which particulaM€thods thoroughly explained [13]. For DeWitt's gauge,
gauge one uses. For example, for the family, the second-order differential operate(V) is
a=a(\)=—5\«?/487% and b=b(\)=5\«?/9672, as we

have already seen. In vievy of the above calculations, we Faﬁ,W(VM:O):\/_—gCaBM{D 5&5(VT)+P,<;+M,;5},
conclude that the cancelation of tlee and b-dependent (A1)
terms takes place for any possible gauge fixing. In this way

we obtain a physical, gauge-fixing independent Newtonian _ .
potentialV(r) which we read frond2z/dt2= —VV, namely, and the one loop EA has the following expression:

+bRg,, In(—0)&*"+ o), (42

5Gh

- +
30mr2c®  12#7r3ct

7GHh

127r2c3|’

GM[ 43GHh

i
Set= Sciasst 5 THNFA#4(V) =i Trin(C 8% + RY),
(43) (A2)
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the first term being the classical action. In the gauge under APPENDIX B: DIVERGENCES FOR
consideration, both the differential operator for the gravitons NONMINIMAL GAUGES
and the one for the ghosts have a minimal form, which in

matrix notation reads In this appendix we sketch the calculation of the one loop

EA and its divergences for the family of gauge-fixing
R ~ R functions. As we have already remarked in the text, when
FV)=U+Q-¢RL (A3)  \#0 we have a nonminimal gauge. For these nonminimal
gauges, a reduction method has been developefil3h
Indeed, for the gravitons the matrb is given by which ge_neralizes the Schwir)ger-DeWitt expansjon. It alsq
A s , a A consists in a local expansion in the background fields, and it
Q=P+M+5R1, while for the ghostQ=R+5§R1. In or- a5 heen calculated up to second order in the curvature ten-
der to calculate the functional traces, we make use of thgors. The starting point is to note that, since the theory as a
Schwinger-DeWitSDW) technique, to get whole is gauge independent on the mass shell, the difference
o of the effective action in any gauge from that in a given
d Se\NA minimal gauge is always proportional to the extremal, i.e.,
f d%Tr 2 (is)"an(x), the left-hand sidéLHS) of the classical field equation. With
(A4) this idea in mind, that difference can be expressed in terms of
nonminimal Green’s functions for gravitons and ghosts,
where thea,(x)’s are the coincidence limit of the SDW which are expanded in terms of the background dimension-

coefficients. The divergent part of the EA for any minimal ality. . . o
operator ind=4 dimensions is determined by the first three  ON€ special easy case of nonminimal gauge families is

SDW coefficients. The divergences coming fraganda, that when the gauge-breaking action differs from the mini-

' A" ) mal one only by an overall factor. This is indeed the case for
can be absorbed into a redefinition of the cosmological con,Eh X family, sincey”(\) = (1\I+ ) x*(A =0). Followin
stant and the Newton constant. In what follows it will be e family, sincex”(x) =( )x“(A=0). Following

relevant the divergence coming from the second SDW coefJEhe meth(_)ds o|f13],_ the EA for any member of this family of
ficient. It reads gauge-fixing functions is

A i ds
TrinF= —d .
(4m)27/0 szt

- 1 ~ 1, i
82(X) = 7g5(RurasR" P~ R R+ OR) 1+ 502 Sel(M) = Sel(A=0) + ZA[TIVL(Y) ~ TIV£(V)]
1 Sy 1 ~ i 2 M 2 v\ 2
+ 1—2RMVR + ED Q, (A5) - Z)\ TIIVL(V) o+ O(EFY)9), (B1)

where 7%,” is the commutator of covariant derivatives. In-

serting the definition of the operato@ for the graviton and

the ghost parts into the formula for the second SDW coeffi-

cient, one can extract the divergence coming from pure grav- nv— 5(Sc+Sm) 2 (R‘“’— ERg’“’
2

where the extermaf*” is given by

ity and the corresponding one due to the massive terms. The SgHY )
former one gives the well-known resiilt4] (B2

e
E )

ASTV(A=0)= 2 2J d4x\/__g[5%(RMVPURMVpU and_\/l’;(V) andV4,(V) are tensors that are Iin(_ear and qua-
(4—d)96m 15 dratic in the extremal, respectively. Their action on a test
21 1 function " is given by
—4R, R+ R%) + =R, R+ -R?|,
H 10 # 20 " v_ 2 OM (a B) g v
26 VE(V) =2k Qy Vi T (V) &7 Q7 7,
A

where the first term in brackets is the Gauss-Bonnet term, a VH(V) = —k?gHe QY glar Ff)y(V)

topological invariant ird=4 spacetime dimensions. The di- (o 06 ~o v

vergence due to the presenceMfis read from its contribu- XGappo(V) T'55(V) E79Q7 " (BY)

tion to the second SDW coefficient, namely,

$0OM +3M2+M(P+R1). It has the following form: In these expressions,I',,(V)=6,V,~25,V,, and
Gap,e0(V) and Q; are the Green’s functions for the gauge

_ field and ghost field, respectively, evaluated for the DeWitt
SHO=0= s g MM gauge
1 Fr@aB(VIN=0) G,p ,o(V)=— 875
+2|\/|/Wp(r pPoKY 4 6R59(P~5(TV) . (A7) aB,ob 00

where we have omitted the boundary term. (06, +R)Q,= 65 (B4
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We are interested just in the contribution to the EA that isvﬁv A0 89+ RZ)_Z(S(X,y)I‘;"XX
linear in the extremalsee main text Therefore we concen-
trate ourselves on W&/,(V), which is given by

st
Trvl"y(V)=2KZJ d4x[R?yBUgvﬁ_gB75gvﬁvy] 82 4—d 916l "By~ 298y | %
g a\ — 1 1
X (O8%+RY)7280X,Y)|y—x- (B5) +5R” aﬁy_zgﬁng} B7)

In order to calculate the divergent part of this expression we
use the methods explained ﬁm]. It is worth recalling that Finally the total divergence reads
we are working up to quadratic order in curvatures, so that

for the contribution of the first term in brackets we can ap-
2

roximate (J6°+R%) "2 by 725%. The two divergences 2
Fhat appeaFarg )by } k TrvV(V) | WV=—— “ 2f d*x\—g
4—d 247
O728780x,y) [y LI (B6) wvy 2 v
a Y yzx_8772 4—d ’ X _SRMV(C; +§Rg’l“,g . (B8)
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